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Summary 
 
This chapter provides the basic infrastructure necessary for a rigorous study of 
continuum mechanics. The topics include tensor algebra and analysis, geometry and 
motion of continuous bodies, and singular surfaces. The concepts of tensor algebra and 
analysis form the language of continuum mechanics and it therefore becomes essential 
to have a good familiarity with them. A continuous body can demonstrate highly 
complicated deformations, thus requiring precise notions to characterize their geometry 
and motion. Singular surfaces are surfaces across which variables such as velocity and 
deformation suffer jump discontinuities. Understanding their kinematical behavior is a 
starting point in the study of many important phenomena including the propagation of 
shock waves, phase fronts, and grain boundaries.  
 
1. Preliminaries 
 
The following notation is adopted in which V  is the translation (vector) space of a real 
three-dimensional Euclidean point space E :  
Lin : the linear space of linear transformations (tensors) from V  to V .  
InvLin : the group of invertible tensors.  

T{ }Sym Lin= ∈ : =A A A , where superscript T  denotes the transpose: linear space of 
symmetric tensors; also, the linear operation of symmetrization on Lin .  

{ 0}Sym Sym+ = ∈ : ⋅ >A u Au  for 0≠ , ∈u u V : the positive-definite tensors.  
T{ }Skw Lin= ∈ : = −A A A : the linear space of skew tensors; also, the linear operation 
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of skew-symmetrization on Lin .  
T 1{ }Orth InvLin −= ∈ : =A A A , where 1−A  is the inverse of A : the group of orthogonal 

tensors.  
{ 1}AOrth Orth J+ = ∈ : =A : the group of rotations.  

 
Here and in the following chapter on balance laws, both indicial notation as well as bold 
notation are used to represent vector and tensor fields. The components in the indicial 
notation are written with respect to the Cartesian coordinate system. Indices denoted 
with roman alphabets vary from one to three but those denoted with Greek alphabets 
vary from one to two. Einstein’s summation convention is assumed unless an exception 
is explicitly stated. Let ijke  be the three dimensional permutation symbol, i.e. 1ijke =  or 

1ijke = −  when ( )i j k, ,  is an even or odd permutation of (1 2 3), , , respectively, and 
0ijke =  otherwise.  

 
The determinant and cofactor of A  are denoted by AJ  and ∗A , respectively, where 

T
AJ∗ −=A A  if InvLin∈ .A  It follows easily that ( )∗ ∗ ∗= .AB A B  Further, Lin  is 

equipped with the Euclidean inner product and norm defined by Ttr( )⋅ =A B AB  and 
2 = ⋅ ,A A A  respectively, where tr( )⋅  is the trace operator. We make frequent use of 

relations like TTT⋅ = ⋅ = ⋅A BC B C BAAC  and T⋅ = ⋅AB CD CABD , etc., which follow 
easily from Ttr tr=A A  and tr( ) tr( )= .AB BA  It is well known that Lin Sym Skw= ⊕ , 
the direct sum of Sym  and Skw.  The tensor product ⊗a b  of vectors { }, ∈a b V  is 
defined by ( ) ( )⊗ = ⋅a b v b v a  for all v  in V , where ⋅b v  is the standard inner product 
of vectors.  
 
2. Body, Configurations, and Motion 
 
The geometrical structure of a physical body is independent of a frame of reference, and 
therefore the body (in continuum mechanics) is usually taken to be a three dimensional 
differential manifold. We denote such a manifold by B  and call its elements material 
points. At every material point X ∈B  we have an associated tangent space XT  which 
is a three dimensional vector space representing a neighborhood of X . On the other 
hand, the body is observed and tested in a (three dimensional) Euclidean frame of 
reference E , which requires us to endow the body B  with a class C  of bijective 
mappings, χχ : →B E  (the subscript χ  is used to indicate the mapping employed).  
We call these mappings the configurations of the body B . The spatial position 

( )X χχ ∈E  denotes the place which a material point X ∈B  occupies in χE . The 
translation space of χE  is a three dimensional inner product space, and is denoted by 

χV .  
 
We introduce a fixed reference configuration, relative to which the notions of 
displacement and strain can be defined. Let C∈κ  be a reference configuration. The 
configuration κ  need not be a configuration occupied by B  at any time and therefore 
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κ  can be arbitrary as long as it belongs to C . 
 
The motion of a body B  is defined as a one-parameter family of configurations, 

t χχ : × →RB E . Such a motion assigns a place χ∈x E  to the material point X ∈B  at 
time t . We write this as  
 

( ) ( )t X X tχχ= ≡ , .x         (1) 
 
The reference configuration κ  assigns a place κ∈X E  to X , so we can express x  as a 
function of X ,  
 

1( ( ) ) ( )t tχ χ−= , ≡ , ,x X Xκ κ        (2) 
 
where κ χχ : × →E Eκ  denotes a mapping from the reference configuration to the 
configuration of the body at time t .  
 
The displacement : × →u RB V  (V can be identified with either xV  or κV ) of a 
material point X  with respect to the reference configuration κ  at time t  is defined as  
 

( ) ( ) ( )X t X t Xχ κ, = , − .u        (3) 
 
The particle velocity χ: × →v RB V  and the particle acceleration χ: × →a RB V  are 
defined as  
 

( ) ( )X t X t
t
χ∂

, = ,
∂

v         (4) 

 
and  
 

2

2( ) ( )X t X t
t
χ∂

, = , ,
∂

a         (5) 

 
respectively. Displacement, particle velocity and particle acceleration can all be 
alternatively expressed as functions on ( )κ B  by using the inverse 1

κκ − : →BE . Such 
functions exist in a one-to-one relation with the functions expressed in the equations 
above. We write  
 

1ˆ ( ) ( ( ) )t tκ −, ≡ ,u X u X  
 

1ˆ ( ) ( ( ) )t tκ −, ≡ ,v X v X         (6) 
 

1ˆ( ) ( ( ) )t tκ −, ≡ , .a X a X  
 
We can similarly write these functions as  
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1( ) ( ( ) )tt tχ −, ≡ ,u x u x  
 

1( ) ( ( ) )tt tχ −, ≡ ,v x v x         (7) 
 

1( ) ( ( ) )tt tχ −, ≡ , .a x a x  
 
 
We define the material time derivative as the derivative of a function with respect to 
time for a fixed material point. For an arbitrary scalar function f : × →R RB , we 
denote its material time derivative as f . Thus,  
 

( ) Xf f X t
t
∂

= , ,
∂

        (8) 

 
where the notation X  denotes the evaluation of the derivative at a fixed X . If f  is 

instead given in terms of x , i.e. if ( ( ) )f f X t tχ= , , , we write  
 

( ) (grad )f f t f
t
∂

= , + ⋅ ,
∂ xx v        (9) 

 
where ( )t f t∂

∂ , xx  is the spatial time derivative (at a fixed x ) and grad f  is the spatial 
gradient (gradient is defined below). Therefore, if the particle velocity is a function of 
spatial position x , then the particle acceleration is ( )t t∂

∂= , +xa v x Lv , where 
grad=L v  is the spatial velocity gradient. 

 
Derivatives 
 
By fields we mean scalar, vector and tensor valued functions defined on position ( x  or 
X ) and time ( t ). In the following we are mainly concerned with the derivatives with 
respect to the position and therefore dependence of fields on time is suppressed.  
 
A scalar-valued field ( ) κφ : →X RE  is differentiable at 0 0( )∈X XU , where 

0( ) κ⊂XU E  is an open neighborhood of 0X , if there exists a unique κ∈c V  such that  
 

( )0 0 0 0( ) ( ) ( ) ( ) oφ φ= + ⋅ − + | − | ,X X c X X X X X     (10) 
 
where ( ) 0o →ε

ε  as 0→ε . We call 
00( ) φ= ∇ |Xc X  (or 0( )φ∇ X ) the gradient of φ  at 

0X . Consider a curve ( )uX  in κE  parameterized by u∈R . Let ( ) ( ( ))u uψ φ= X  and 

1 1 0 0( ) ( )u u= , =X X X X  for 1 0{ }u u, ∈R . Then from (10),  
 

( )1 0 0 1 0 1 0( ) ( ) ( ) ( )u u oψ ψ φ− = ∇ ⋅ − + | − | .X X X X X     (11) 
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Moreover 1 0 0 1 0 1 0( )( ) ( )u u u o u u′− = − + | − |X X X , where 0( )u′X  is the derivative of X  
with respect to u  at 0u u= . Therefore, 1 0 1 0( )O u u| − |= | − |X X  and consequently we 
can rewrite (11)  
 

1 0 1 0
0 0

1 0 1 0

( ) ( ) ( )( ) ( )u u o u uu
u u u u

ψ ψ φ− | − |′= ∇ ⋅ + .
− −

X X     (12) 

 
For 1 0u u→  we obtain the chain rule, 0 0 0( ) ( ( )) ( )u u uψ φ′ ′= ∇ ⋅X X , which can also be 
expressed as ( )d d

du du
φ φ= ∇ ⋅ XX  or  

 
( ) ( )d dφ φ= ∇ ⋅ .X X X         (13) 

 
A vector-valued field ( ) κ: →v X E V  is differentiable at 0 0( )∈X XU  if there exists a 
unique tensor κ: →l V V  such that  
 

0 0 0( ) ( ) ( )( )= + − + ,v X v X l X X X r       (14) 
 
where ( )0o| |= | − |r X X . We call 

00( ) = ∇ |Xl X v  (or 0( )∇v X ) the gradient of v  at 0X . 
The chain rule in this case can be obtained following the procedure preceding Eq. (13):  
 

( ) ( )d d= ∇ .v X v X         (15) 
 
The divergence of a vector field is a scalar defined by  
 
Div tr( )= ∇ .v v         (16) 
 
The curl of a vector field is a vector defined by  
 
(Curl ) Div( )⋅ = ×v c v c        (17) 
 
for any fixed ∈c V .  
 
Differentiability of a tensor-valued function is defined in a similar manner. In particular, 
for a tensor ( ) Linκ: →A X E , we write  
 

( ) ( )d d= ∇ .A X A X         (18) 
 
The divergence of A  is the vector defined by  
 

T(Div ) Div( )⋅ =A c A c        (19) 
 
for any fixed ∈c V . The superscript T  denotes the transpose. The curl of A  is the 
tensor defined by  
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T(Curl ) Curl( )=A c A c        (20) 
 
for any fixed ∈c V .  
 
Finally, if the fields are expressed as functions of x  rather than X , the various 
definitions above remain valid. We instead denote the gradient, divergence and curl 
operators by grad , div , and curl , respectively.  
 
 
- 
- 
- 
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